About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Anaerobic digestion of macroalgae: methane potentials, pre-treatment, inhibition and co-digestion

From

Bioenergy and Biomass, Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Biosystems Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

In the present study we tested four macroalgae species – harvested in Denmark – for their suitability of bioconversion to methane. In batch experiments (53 WC) methane yields varied from 132 ml g volatile solids1 (VS) for Gracillaria vermiculophylla, 152 ml g VS1 for Ulva lactuca, 166 ml g VS1 for Chaetomorpha linum and 340 ml g VS1 for Saccharina latissima following 34 days of incubation.

With an organic content of 21.1% (1.5–2.8 times higher than the other algae) S. latissima seems very suitable for anaerobic digestion. However, the methane yields of U. lactuca, G. vermiculophylla and C. linum could be increased with 68%, 11% and 17%, respectively, by pretreatment with maceration. U. lactuca is often observed during ‘green tides’ in Europe and has a high cultivation potential at Nordic conditions.

Therefore, U. lactuca was selected for further investigation and co-digested with cattle manure in a lab-scale continuously stirred tank reactor. A 48% increase in methane production rate of the reactor was observed when the concentration of U. lactuca in the feedstock was 40% (VS basis). Increasing the concentration to 50% had no further effect on the methane production, which limits the application of this algae at Danish centralized biogas plant.

Language: English
Year: 2011
Pages: 1736-1742
ISSN: 19969732 and 02731223
Types: Journal article
DOI: 10.2166/wst.2011.654

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis