About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Groundwater acidification and the mobilization of trace metals in a sandy aquifer

From

Department of Environmental Engineering, Technical University of Denmark1

The acidification of groundwater due to acid rain impact and the mobilization of the trace metals Ni, Be, Cd and Co was studied in a noncalcareous sandy aquifer. The groundwater is acidified down to pH 4.4 in the upper 3-4 m of the saturated zone. There is a sharp acidification front and below that the pH increases to 5.2-6.5.

The acid zone groundwater contains an Al concentration of approximately 0.2 mM. These observations could be explained by a reactive transport model for downward groundwater movement based on ion exchange and equilibrium with Al(OH)3. At the acidification front, the Al3+ in groundwater exchanges for sorbed Ca2+ and Mg2+ and the coupled dissolution of Al(OH)3 causes the pH to increase.

The downward migration rate of the acidification front is 3.5-5.0 cm/yr. Trace metals (Ni, Be, Cd and Co) are found to accumulate near the acidification front. Downward moving, low pH, and trace metal containing groundwater passes the acidification front, and the trace metals adsorb as the pH increases.

The acidification front moves downward at a slower rate, and in this process the heavy metals are desorbed. Accordingly, the acidification front functions as a geochemical trap where trace metals accumulate, and their amount will increase with time. Different surface complexation models were explored to explain the behavior of Ni.

Neither a simple iron oxide surface complexation model nor ion exchange could explain the field observations of the Ni distribution. The sediment appeared, even at low pH, to have a much stronger affinity toward Ni than predicted by the iron oxide model. The discrepancy can be accounted for in the model by increasing the Ni binding strength constant in combination with an increased number of reactive sites.

Language: English
Year: 2004
Pages: 2829-2835
ISSN: 0013936x , 15205851 and 13823124
Types: Journal article
DOI: 10.1021/es030133v

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis