About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Short-term residential load forecasting: Impact of calendar effects and forecast granularity

In Applied Energy 2017, Volume 205, pp. 654-669
From

Department of Wind Energy, Technical University of Denmark1

Monash University2

Literature is rich in methodologies for “aggregated” load forecasting which has helped electricity network operators and retailers in optimal planning and scheduling. The recent increase in the uptake of distributed generation and storage systems has generated new demand for “disaggregated” load forecasting for a single-customer or even down at an appliance level.

Access to high resolution data from smart meters has enabled the research community to assess conventional load forecasting techniques and develop new forecasting strategies suitable for demand-side disaggregated loads. This paper studies how calendar effects, forecasting granularity and the length of the training set affect the accuracy of a day-ahead load forecast for residential customers.

Root mean square error (RMSE) and normalized RMSE were used as forecast error metrics. Regression trees, neural networks, and support vector regression yielded similar average RMSE results, but statistical analysis showed that regression trees technique is significantly better. The use of historical load profiles with daily and weekly seasonality, combined with weather data, leaves the explicit calendar effects a very low predictive power.

In the setting studied here, it was shown that forecast errors can be reduced by using a coarser forecast granularity. It was also found that one year of historical data is sufficient to develop a load forecast model for residential customers as a further increase in training dataset has a marginal benefit.

Language: English
Year: 2017
Pages: 654-669
ISSN: 18729118 and 03062619
Types: Journal article
DOI: 10.1016/j.apenergy.2017.07.114

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis