About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Co-formation of hydroperoxides and ultra-fine particles during the reactions of ozone with a complex VOC mixture under simulated indoor conditions

From

Department of Mechanical Engineering, Technical University of Denmark1

In this study we examined the co-formation of hydrogen peroxide and other hydroperoxides (collectively presented as H2O2*) as well as submicron particles, including ultra-fine particles (UFP), resulting from the reactions of ozone (O-3) with a complex mixture of volatile organic compounds (VOCs) under simulated indoor conditions.

The VOC mixture contained 23 compounds, including two terpenes (d-limonene and alpha-pinene), two unsaturated alkenes (1-decene and 1-octene), and 19 other saturated organic compounds. These compounds are commonly found in indoor air but their concentrations were higher than typical indoor levels. When O-3 was added to a 25-m(3) controlled environmental facility (CEF) containing the 23 VOC mixture, both H2O2* and submicron particles were formed.

The 2-h average concentration of H2O2* was 1.89 +/- 0.30ppb, and the average total particle number concentration was 46,000 +/- 12,000 particles cm(-3). A small increase of UFP (0.02-0.1 mu m) occurred 5 min after the O-3 addition (17 min after the VOC addition) and a sharp increase of UFP occurred 13 min after the O-3 addition, suggesting homogeneous nucleation.

The delayed onset of this event might reflect the time required to achieve saturated concentrations of the condensable organics. When the 2 terpenes were removed from the O-3/23 VOCs mixture, no H2O2* or particles were formed, indicating that the reactions of O-3 With the two terpenes were the key processes contributing to the formation of H2O2* and submicron particles in the O-3/23 VOCs system.

The present study confirmed the findings of a previous study carried out in a real-world office and generated new findings regarding co-formation of UFP. Through a comparative analysis of H2O2* yields under different reaction conditions, this study demonstrates that VOCs co-present with the terpenes and O-3 may play a role in producing H2O2*. (c) 2005 Elsevier Ltd.

All rights reserved.

Language: English
Year: 2005
Pages: 5171-5182
ISSN: 18732844 and 13522310
Types: Journal article
DOI: 10.1016/j.atmosenv.2005.05.018

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis