About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Overview of ASDEX Upgrade results

In Nuclear Fusion 2009, Volume 49, Issue 10, pp. 104009 (9pp)

By Zohm, H.1; Adamek, J.2; Angioni, C.1; Antar, G.3; Atanasiu, C.V.4; Balden, M.1; Becker, W.1; Behler, K.1; Behringer, K.1; Bergmann, A.1; Bertoncelli, T.1; Bilato, R.1; Bobkov, V.1; Boom, J.1; Bottino, A.1; Brambilla, M.1; Braun, F.1; Brüdgam, M.1; Buhler, A.1; Chankin, A.1; Classen, I.1; Conway, G.D.1; Coster, D.P.1; de Marne, P.1; D'Inca, R.1; Drube, R.1; Dux, R.1; Eich, T.1; Engelhardt, K.1; Esposito, B.; Fahrbach, H.-U.1; Fattorini, L.; Fink, J.1; Fischer, R.1; Flaws, A.1; Foley, M.; Forest, C.; Fuchs, J.C.1; Gal, K.; Munoz, M.G.1; Adamov, M.G.1; Giannone, L.1; Görler, L.1; Gori, S.1; da Graca, S.1; Granucci, G.; Greuner, H.1; Gruber, O.1; Gude, A.1; Günter, S.1; Haas, G.1; Hahn, D.1; Harhausen, J.1; Hauff, T.1; Heinemann, B.1; Herrmann, A.1; Hicks, N.1; Hobirk, J.1; Hölzl, M.1; Holtum, D.1; Hopf, C.1; Horton, L.1; Huart, M.1; Igochine, V.1; Janzer, M.1; Jenko, F.1; Kallenbach, A.1; Kalvin, S.1; Kardaun, O.; Kaufmann, M.1; Kick, M.1; Kirk, A.; Klingshirn, H.-J.1; Koscis, G.; Kollotzek, H.1; Konz, C.1; Krieger, K.1; Kurki-Suonio, T.; Kurzan, B.1; Lackner, K.1; Lang, P.T.1; Langer, B.1; Lauber, P.1; Laux, M.1; Leuterer, F.1; Likonen, J.; Liu, L.1; Lohs, A.1; Lunt, T.1; Lyssoivan, A.; Maggi, C.F.1; Manini, A.1; Mank, K.1; Manso, M.-E.; Mantsinen, M.; Maraschek, M.1; Martin, P.; Mayer, M.1; McCarthy, P.; McCormick, K.1; Meister, H.1; Meo, Fernando5,6; Merkel, P.1; Merkel, R.1; Mertens, V.1; Merz, F.1; Meyer, H.; Mlynek, A.1; Monaco, F.1; Müller, H.-W.1; Münich, M.1; Murmann, H.1; Neu, G.1; Neu, R.1; Neuhauser, J.1; Nold, B.; Noterdaeme, J.M.1; Pautasso, G.1; Pereverzev, G.1; Poli, E.1; Potzel, S.1; Püschel, M.1; Pütterich, T.1; Pugno, R.1; Raupp, G.1; Reich, M.1; Reiter, B.1; Ribeiro, T.; Riedl, R.1; Rohde, V.1; Roth, J.1; Rott, M.1; Ryter, F.1; Sandmann, W.1; Santos, J.; Sassenberg, K.; Sauter, P.1; Scarabosio, A.1; Schall, G.1; Schilling, H.-B.1; Schirmer, J.1; Schmid, A.1; Schmid, K.1; Schneider, W.1; Schramm, G.1; Schrittwieser, R.; Schustereder, W.1; Schweinzer, J.1; Schweizer, S.1; Scott, B.1; Seidel, U.1; Sempf, M.1; Serra, F.; Sertoli, M.1; Siccinio, M.1; Sigalov, A.1; Silva, A.; Sips, C.C.1; Speth, E.1; Stäbler, A.1; Stadler, R.1; Steuer, K.-H.1; Stober, J.1; Streibl, B.1; Strumberger, E.1; Suttrop, W.1; Tardini, G.1; Tichmann, C.1; Treutterer, W.1; Tröster, C.1; Urso, L.1; Vainonen-Ahlgren, E.; Varela, P.; Vermare, L.1; Volpe, F.1; Wagner, D.1; Wigger, C.1; Wischmeier, M.1; Wolfrum, E.1; Würsching, E.1; Yadikin, D.1; Yu, Q.1; Zasche, D.1; Zehetbauer, T.1; Zilker, M.1 ...and 175 more

From

Max Planck Institute1

Czech Academy of Sciences2

American University of Beirut3

Institute of Atomic Physics4

Plasma Physics and Technology Programme, Risø National Laboratory for Sustainable Energy, Technical University of Denmark5

Risø National Laboratory for Sustainable Energy, Technical University of Denmark6

ASDEX Upgrade was operated with a fully W-covered wall in 2007 and 2008. Stationary H-modes at the ITER target values and improved H-modes with H up to 1.2 were run without any boronization. The boundary conditions set by the full W wall (high enough ELM frequency, high enough central heating and low enough power density arriving at the target plates) require significant scenario development, but will apply to ITER as well.

D retention has been reduced and stationary operation with saturated wall conditions has been found. Concerning confinement, impurity ion transport across the pedestal is neoclassical, explaining the strong inward pinch of high-Z impurities in between ELMs. In improved H-mode, the width of the temperature pedestal increases with heating power, consistent with a scaling.

In the area of MHD instabilities, disruption mitigation experiments using massive Ne injection reach volume averaged values of the total electron density close to those required for runaway suppression in ITER. ECRH at the q = 2 surface was successfully applied to delay density limit disruptions. The characterization of fast particle losses due to MHD has shown the importance of different loss mechanisms for NTMs, TAEs and also beta-induced Alfven eigenmodes (BAEs).

Specific studies addressing the first ITER operational phase show that O1 ECRH at the HFS assists reliable low-voltage breakdown. During ramp-up, additional heating can be used to vary li to fit within the ITER range. Confinement and power threshold in He are more favourable than in H, suggesting that He operation could allow us to assess H-mode operation in the non-nuclear phase of ITER operation.

Language: English
Publisher: IOP Publishing
Year: 2009
Pages: 104009 (9pp)
ISBN: 0819445126 and 9780819445124
ISSN: 10185577 , 00295515 and 17414326
Types: Journal article
DOI: 10.1088/0029-5515/49/10/104009

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis