About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Observation of the Bi,Pb(2223) reaction mechanism and alternative ways of producing tapes with new filament configurations

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark

Investigations on the Bi,Pb(2223) phase formation confirm a mechanism based on nucleation and growth. The same mechanism was found to hold under various external conditions: a) in pressed samples, b) in Ag sheathed tapes, c) in air or in reduced oxygen partial pressure and d) with or without the presence of Pb.

A high temperature neutron diffraction investigation on monofilamentary Bi,Pb(2223) tapes shows that this phase remains stable during the cooling process after reaction. On cooling, an enhancement of the Bi(2212) phase is observed, which occurs at the expense of the other phases, (Sr,Ca)/sub 14/Cu/sub 24/O/sub 41/ and Bi(2201).

New tape configurations are presented, in view of a) the reduction of anisotropy (on both, tapes or wires) and b) the reduction of AC losses. These configurations require the use of nonconventional techniques, e.g. two-axis rolling and/or periodic pressing. Using periodic pressing, j/sub c/(77K,0T) values of 35,000 A/cm/sup 2/ have been obtained in Bi,Pb(2223) multifilamentary tapes of lengths >2 m.

Language: English
Publisher: IEEE
Year: 1999
Pages: 2430-2435
ISSN: 10518223 , 15582515 and 23787074
Types: Journal article
DOI: 10.1109/77.784965

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis