About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication

From

Instituto de Microelectrónica de Madrid, CSIC. Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain

Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

National Institute of Standards and Technology, Gaithersburg, MD-20899, USA

Local oxidation of silicon surfaces by scanning probe microscopy is a very promising lithographic approach at nanometre scale. Here, we present two approaches to optimize the oxidation for nanofabrication purposes: (i) we analyse the reproducibility and kinetics of the oxidation of Si(100) surfaces when there is no tip and sample mechanical contact and (ii) we study the effect of modulating the voltage in the aspect ratio of the oxide structures grown.

The finite tip-sample separation has remarkable practical consequences: the same tip can be used to perform thousands of modifications without any sign of wear. In addition, the structures generated do not show any degradation over long periods (months). It is also found that the kinetics is independent of the force microscopy mode used (contact or non-contact).

On the other hand, the application of an AC voltage to induce the oxidation significantly modifies the aspect ratio of the structures. A detailed description of the oxidation mechanism is proposed to account for both results.

Language: English
Year: 1999
Pages: 34-38
ISSN: 13616528 and 09574484
Types: Journal article
DOI: 10.1088/0957-4484/10/1/008

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis