About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Removal of Toluene in Waste Gases Using a Biological Trickling Filter

From

Department of Environmental Science and Engineering, Technical University of Denmark1

The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h−1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m−3 h−1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m−3 h−1, corresponding to a zero order removal rate of 0.11±0.03 g m−2 h−1 per unit of nominal surface area.

The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m−3, corresponding to inlet gas concentrations above 0.7–0.8 g m−3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h−1 (k1A a=24–86 h−1).

Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal.

The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without.

The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.

Language: English
Publisher: Kluwer Academic Publishers
Year: 1995
Pages: 109-118
ISSN: 15729729 and 09239820
Types: Journal article
DOI: 10.1007/BF00695341
ORCIDs: Arvin, Erik

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis