About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights

From

Department of Environmental Engineering, Technical University of Denmark1

Residual Resource Engineering, Department of Environmental Engineering, Technical University of Denmark2

In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the pH in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process.

The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpmand using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45.

The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation of VFA in the effluent. The study showed that addition of hydrogen had positive effect on the methanogenesis, but had no obvious effect on the acetogenesis. Both hydrogenotrophic methanogenic activity and the concentration of coenzyme F420 involved in methanogenesis were increased.

The archaeal community was also altered with the addition of hydrogen, and a Methanothermobacter thermautotrophicus related band appeared in a denaturing gradient gel electrophoresis gel from the sample of the reactor with hydrogen addition. Though the addition of hydrogen increased the dissolved hydrogen concentration, the degradation of propionate was still thermodynamically feasible at the reactor conditions.

Language: English
Publisher: Springer-Verlag
Year: 2013
Pages: 1373-1381
ISSN: 14320614 and 01757598
Types: Journal article
DOI: 10.1007/s00253-012-4547-5
ORCIDs: Angelidaki, Irini

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis