About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Steepest-Ascent Constrained Simultaneous Perturbation for Multiobjective Optimization

From

Mathematical Statistics, Department of Informatics and Mathematical Modeling, Technical University of Denmark1

Department of Informatics and Mathematical Modeling, Technical University of Denmark2

The simultaneous optimization of multiple responses in a dynamic system is challenging. When a response has a known gradient, it is often easily improved along the path of steepest ascent. On the contrary, a stochastic approximation technique may be used when the gradient is unknown or costly to obtain.

We consider the problem of optimizing multiple responses in which the gradient is known for only one response. We propose a hybrid approach for this problem, called simultaneous perturbation stochastic approximation steepest ascent, SPSA-SA or SP(SA)(2) for short. SP(SA)(2) is an SPSA technique that leverages information about the known gradient to constrain the perturbations used to approximate the others.

We apply SP(SA)(2) to the cross-layer optimization of throughput, packet loss, and end-to-end delay in a mobile ad hoc network (MANET), a self-organizing wireless network. The results show that SP(SA)(2) achieves higher throughput and lower packet loss and end-to-end delay than the steepest ascent, SPSA, and the Nelder-Mead stochastic approximation approaches.

It also reduces the cost in the number of iterations to perform the optimization.

Language: English
Publisher: ACM, 2 Penn Plaza, Suite 701, New York, NY, USA
Year: 2011
Pages: 1-22
ISSN: 15581195 and 10493301
Types: Journal article
DOI: 10.1145/1870085.1870087
ORCIDs: Kulahci, Murat

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis