About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Estimating bolt tightness from measured vibrations: Influence of nonlinear boundary stiffness and damping

From

Department of Mechanical Engineering, Technical University of Denmark1

Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark2

Karlsruhe Institute of Technology3

Brüel and Kjær Sound and Vibration Measurement A/S4

In this work we present a technique to assess the level of bolt tightness and to quantify the tension based on measured natural frequencies and damping ratios of the bolt. This technique is investigated experimentally and theoretically. A simple model for the bolt that consists of a pre-stressed one-dimensional beam linear equation with linear and nonlinear stiffness and damping at its boundaries is investigated to explain experimental results.

Figure 1a shows the squared first bending natural frequency for a bolt as function of bolt tension. At low tension the squared natural frequency rapidly increases with tension. As the bolt is gradually tightened the squared frequency starts changing approximately linearly with tension [1]. Figure 1b shows the first mode damping ratio of the bolt as function of the bolt tension.

At low tension the damping ratio decreases rapidly with tension and then starts slowly decreasing for higher tension. A mathematical beam model with linear/nonlinear stiffness and damping at its boundaries is used to explain the experimental results.

Language: English
Year: 2018
Proceedings: International Conference on Structural Nonlinear Dynamics and Diagnosis (CSNDD'2018)
Types: Conference paper
ORCIDs: Sah, Si Mohamed , Thomsen, Jon Juel and Brøns, Marie

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis