About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

PhD Thesis

Quantum correlations and light localization in disordered nanophotonic structures

From

Quantum Photonics, Department of Photonics Engineering, Technical University of Denmark1

Department of Photonics Engineering, Technical University of Denmark2

This thesis reports results on quantum properties of light in multiple-scattering nano-structured materials. Spatial quantum correlations of photons are demonstrated experimentally that are induced by multiple scattering of squeezed light and of purely quantum origin. By varying the quantum state of the light source, positive and negative spatial quantum correlations are observed.

Angular-resolved measurements of multiply scattered photons show the innite range of the correlation function in the diusive regime. The multiply scattered light is characterized in frequency-resolved quantum noise measurements as well as in time-resolved photon-coincidence measurements and the experimental results are in excellent agreement with the quantum theory of multiple scattering.

Probing the noise properties of light in the coherent backscattering cone reveals an enhancement factor of the multiply scattered photon uctuations that is larger than the predicted enhancement of the backscattered light intensity. Characterizing the quantum properties of multiply scattered light forms the basis for studies of quantum interference and quantum entanglement in disordered media.

Anderson localization of light is demonstrated in disordered photonic crystal waveguides. Transmission measurements show that the localization length is strongly dispersive, allowing the control of one-dimensional Anderson localization of light. The statistical properties of Anderson localization are probed by embedding quantum dot light sources in disordered photonic crystal waveguides.

From photoluminescence measurements, the spectral distribution of Anderson-localized modes is determined. Comparing the experimental data with one-dimensional analytical calculations provides a novel method to unambiguously distinguish Anderson localization from losses.

Language: English
Publisher: Technical University of Denmark
Year: 2010
ISBN: 8792062482 and 9788792062482
Types: PhD Thesis

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis