About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Impact of diffuse layer processes on contaminant forward and back diffusion in heterogeneous sandy-clayey domains

From

Technical University of Denmark1

Circularity & Environmental Impact, Department of Environmental Engineering, Technical University of Denmark2

Department of Environmental Engineering, Technical University of Denmark3

Low-permeability aquitards can significantly affect the transport, distribution, and persistence of contaminant plumes in subsurface systems. Although such low-permeability materials are often charged, the key role of charge-induced electrostatic processes during contaminant transport has not been extensively studied.

This work presents a detailed investigation exploring the coupled effects of heterogeneous distribution of physical, chemical and electrostatic properties on reactive contaminant transport in field-scale groundwater systems including spatially distributed clay zones. We performed an extensive series of numerical experiments in three distinct heterogeneous sandy-clayey domains with different levels of complexity.

The flow and reactive transport simulations were performed by explicitly resolving the complex velocity fields, the small-scale electrostatic processes, the compound-specific diffusive/dispersive fluxes and the chemical processes utilizing a multi-continua based reactive transport code (MMIT-Clay). In each particular domain, numerical experiments were performed focusing on both the forward and back diffusion through the sandy-clayey interfaces.

The results illuminate the control of microscopic electrostatic mechanisms on macroscopic mass transfer. Coulombic interactions in the clay's diffuse layer can significantly accelerate or retard a particular species depending on its charge. Furthermore, the chemical heterogeneity plays a major role in mass storage and release during reactive transport.

Neglecting such processes can lead to substantial over- or underestimation of the overall transport behavior, which underlines the need for integrated physical, chemical and electrostatic approaches to accurately describe mass transfer processes in systems including low-permeability inclusions.

Language: English
Year: 2021
Pages: 103754
ISSN: 18736009 and 01697722
Types: Journal article
DOI: 10.1016/j.jconhyd.2020.103754
ORCIDs: Rolle, Massimo

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis