About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Process Simulation and Evaluation for NH3/CO2 Separation from Melamine Tail Gas with Protic Ionic Liquids

From

Department of Chemical and Biochemical Engineering, Technical University of Denmark1

KT Consortium, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

PROSYS - Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

University of Chinese Academy of Sciences4

Chinese Academy of Sciences5

Melamine production is known to produce a tail gas with a significant amount of NH3 and CO2. The most common separation methods applied to melamine tail gas are water scrubbing and urea co-production technology. With good stability, non-volatility and tailored properties, ionic liquids (ILs) are regarded as vital potential solvents for gas separation.

Therefore, two new process technologies, one is the ionic liquid-based process (IL-0), and the other is the enhanced ionic liquid process (IL-En) was employed and evaluated for energy and cost efficiency. The IL-En employs stripping on the treatment of melamine tail gas. The protic ionic liquid named 1-butyl imidazolium bis (trifluoromethylsulfonyl) imide ([Bim][NTf2]) was selected for the evaluation of the melamine tail gas cleaning process.

Thermodynamic data were fitted to the NRTL equations. Three full process flowsheets were simulated in Aspen Plus V11 TM. A basic and an enhanced ionic liquid process (IL-0 and IL-En), a conventional water scrubbing (WS) technology as a comparison, process sensitivity analysis and energy/economic evaluation were carried out.

The results showed that the total separation cost of the IL-En can be reduced by 61% compared to that of the WS process. Moreover, the IL-based flowsheet is simpler than WS and avoids wastewater discharge.

Language: English
Year: 2022
Pages: 120680
ISSN: 18733794 and 13835866
Types: Journal article
DOI: 10.1016/j.seppur.2022.120680
ORCIDs: Duan, Yuanmeng , Abildskov, Jens and Kjøbsted Huusom, Jakob

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis