About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine

From

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark1

Research Groups, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark2

Bioelectrochemical Systems, Research Groups, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark3

BioLabChip, Department of Micro- and Nanotechnology, Technical University of Denmark4

Department of Micro- and Nanotechnology, Technical University of Denmark5

Center for Nuclear Technologies, Technical University of Denmark6

The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark7

Radioecology and Tracer Studies, Center for Nuclear Technologies, Technical University of Denmark8

Microbes can reduce CO2 into multicarbon chemicals with electrons acquired from the cathode of a bioelectrochemical reactor. This bioprocess is termed microbial electrosynthesis (MES). One of the main challenges for the development of highly productive MES reactors is achieving efficient electron transfer from the cathode to microbes.

Here, carbon cloth cathodes modified with reduced graphene oxide functionalized with tetraethylene pentamine (rGO-TEPA) were readily self-assembled in the cathodic chamber of a MES reactor. Electroactive biofilms with unique spatial arrangement were subsequently formed with Sporomusa ovata at the surface of rGO-TEPA-modified electrodes resulting in a more performant MES process.

The acetate production rate from CO2 was increased 3.6 fold with the formation of dense biofilms when wild type S. ovata was combined with rGO-TEPA. An improvement of 11.8 fold was observed with a highly structured biofilm including multiple spherical structures possibly consisting of bioinorganic networks of rGO-TEPA and bacterial cells from a novel strain of S. ovata adapted to reduce CO2 faster.

The three dimensional biofilms observed in this study enabled highly effective electric interactions between S. ovata and the cathode, demonstrating that the development of dense cathode biofilms is an effective approach to improve MES productivity.

Language: English
Year: 2016
Pages: 8395-8401
ISSN: 20507496 and 20507488
Types: Journal article
DOI: 10.1039/C6TA02036D
ORCIDs: Zhang, Tian

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis