About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Microbial Key Players Involved in P Turnover Differ in Artificial Soil Mixtures Depending on Clay Mineral Composition

From

Helmholtz Zentrum München - German Research Center for Environmental Health1

Technical University of Munich2

Department of Health Technology, Technical University of Denmark3

Bioinformatics, Department of Health Technology, Technical University of Denmark4

Metagenomics, Bioinformatics, Department of Health Technology, Technical University of Denmark5

Bayesian modeling, Machine learning, Molecular Evolution, and Metagenomics, Bioinformatics, Department of Health Technology, Technical University of Denmark6

University of Zagreb7

Nutrient turnover in soils is strongly driven by soil properties, including clay mineral composition. One main nutrient is phosphorus (P), which is known to be easily immobilized in soil. Therefore, the specific surface characteristics of clay minerals might substantially influence P availability in soil and thus the microbial strategies for accessing P pools.

We used a metagenomic approach to analyze the microbial potential to access P after 842 days of incubation in artificial soils with a clay mineral composition of either non-expandable illite (IL) or expandable montmorillonite (MT), which differ in their surface characteristics like soil surface area and surface charge.

Our data indicate that microorganisms of the two soils developed different strategies to overcome P depletion, resulting in similar total P concentrations. Genes predicted to encode inorganic pyrophosphatase (ppa), exopolyphosphatase (ppx), and the pstSCAB transport system were higher in MT, suggesting effective P uptake and the use of internal poly-P stores.

Genes predicted to encode enzymes involved in organic P turnover like alkaline phosphatases (phoA, phoD) and glycerophosphoryl diester phosphodiesterase were detected in both soils in comparable numbers. In addition, Po concentrations did not differ significantly. Most identified genes were assigned to microbial lineages generally abundant in agricultural fields, but some were assigned to lineages known to include oligotrophic specialists, such as Bacillaceae and Microchaetaceae.

Language: English
Publisher: Springer US
Year: 2021
Pages: 897-907
ISSN: 1432184x and 00953628
Types: Journal article
DOI: 10.1007/s00248-020-01635-1
ORCIDs: 0000-0001-5520-8106 and Vestergaard, Gisle Alberg

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis