About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Passivation Properties and Formation Mechanism of Amorphous Halide Perovskite Thin Films

From

University of Amsterdam1

University of California at San Diego2

Maastricht University3

Department of Energy Conversion and Storage, Technical University of Denmark4

Atomic Scale Materials Modelling, Department of Energy Conversion and Storage, Technical University of Denmark5

Yonsei University6

Lead halide perovskites are among the most exciting classes of optoelectronic materials due to their unique ability to form high‐quality crystals with tunable bandgaps in the visible and near‐infrared using simple solution precipitation reactions. This facile crystallization is driven by their ionic nature; just as with other salts, it is challenging to form amorphous halide perovskites, particularly in thin‐film form where they can most easily be studied.

Here, rapid desolvation promoted by the addition of acetate precursors is shown as a general method for making amorphous lead halide perovskite films with a wide variety of compositions, including those using common organic cations (methylammonium and formamidinium) and anions (bromide and iodide). By controlling the amount of acetate, it is possible to tune from fully crystalline to fully amorphous films, with an interesting intermediate state consisting of crystalline islands embedded in an amorphous matrix.

The amorphous lead halide perovskite has a large and tunable optical bandgap. It improves the photoluminescence quantum yield and lifetime of incorporated crystalline perovskite, opening up the intriguing possibility of using amorphous perovskite as a passivating contact, as is currently done in record efficiency silicon solar cells.

Language: English
Year: 2021
ISSN: 16163028 and 1616301x
Types: Journal article
DOI: 10.1002/adfm.202010330
ORCIDs: 0000-0002-9158-8326 and Svane, Katrine Louise

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis