About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic-biogeochemical model

From

Section for Population Ecology and Genetics, National Institute of Aquatic Resources, Technical University of Denmark1

National Institute of Aquatic Resources, Technical University of Denmark2

Aarhus University3

Danish Meteorological Institute4

Section for Ocean Ecology and Climate, National Institute of Aquatic Resources, Technical University of Denmark5

Accounting for the individual variability and regional variations are important when predicting recruitment in fish species. Spatially explicit descriptions for recruitment in sandeels are necessary and sandeel growth and survival depend locally on zooplankton prey. We investigate the responses of larval and early juvenile Lesser Sandeel (Ammodytes marinus) in the North Sea to local feeding conditions by an adapted version of a generic bioenergetic individual-based model for larval fish describing growth and survival.

Prey encounter and physiological processes are described explicitly in the model, which allows analyzing the influence of prey on the growth and survival of sandeel. The model is coupled to a hydrodynamic-biogeochemical model with physical and prey fields and implemented in temporal and three-dimensional spatial settings.

Zooplankton biomass simulated by the biogeochemical model is validated by Continuous Plankton Recorder survey time series data. Spatio-temporal dynamics of the sandeel cohorts are simulated by the integrated model framework for the period 2004-2006 and five major area divisions of suitable sandeel habitats in the North Sea.

This allows obtaining insight into the influence of temperature variation and zooplankton availability on the growth and survival. To determine areas promising for recruitment, area divisions are compared and optimal time of hatching for higher survival to recruitment due to match-mismatch with prey is determined by comparing different hatching times.

The effect of vertical diel migration behavior of sandeel on the model outcomes is also examined. Vertical migration of sandeel results in increased feeding ability and growth and decreased starvation mortality of individuals. Results show that areas of German Bight and Southern Bight with high zooplankton production support high growth of sandeel.

Most sandeel survive to settling in the Dogger Bank area that has large retention on average and still productive in zooplankton. Hatching at the optimal time of March/February with matching zooplankton peak concentrations enhances the growth and survival. Growth correlates positively with the observed temperature trend.

Survival correlates negatively with temperature and prominently, when the hatching is in winter. © 2012 Elsevier B.V.

Language: English
Year: 2013
Pages: 294-306
ISSN: 18727026 and 03043800
Types: Journal article
DOI: 10.1016/j.ecolmodel.2012.11.009
ORCIDs: Christensen, Asbjørn , Munk, Peter , Mosegaard, Henrik , 0000-0001-8594-2993 and 0000-0002-7640-3514

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis