About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Progress on the mechanistic understanding of SO2 oxidation catalysts

From

RAS - Boreskov Institute of Catalysis, Siberian Branch1

University of Patras2

Department of Chemistry, Technical University of Denmark3

For almost a century vanadium oxide based catalysts have been the dominant materials in industrial processes for sulfuric acid production. A vast body of information leading to fundamental knowledge on the catalytic process was obtained by Academician [G.K. Boreskov, Catalysis in Sulphuric Acid Production, Goskhimizdat (in Russian), Moscow, 1954, p. 348].

In recent years these catalysts have also been used to clean flue gases and other SO; containing, industrial off-gases. In spite of the importance and long utilization of these industrial processes, the catalytic active species and the reaction mechanism have been virtually unknown until recent years.

It is now recognized that the working catalyst is well described by the molten salt/gas system M2S2O7-MHSO4-V2O5/SO2-O-2-SO3-H2O-CO2-N-2 (M=Na, K, Cs) at 400-600 degrees C and that vanadium complexes play a key role in the catalytic reaction mechanism. A multiinstrumental investigation that combine the efforts of four groups from four different countries has been carried out on the model system as well as on working industrial catalysts.

Detailed information has been obtained on the complex and on the redox chemistry of vanadium. Based on this, a deeper understanding of the reaction mechanism has been achieved. (C) 1999 Elsevier Science B.V. All rights reserved.

Language: English
Year: 1999
Pages: 469-479
ISSN: 18734308 and 09205861
Types: Journal article
DOI: 10.1016/S0920-5861(99)00034-6
ORCIDs: Fehrmann, Rasmus

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis