About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Electrochemically Driven Surface-Confined Acid/Base Reaction for an Ultrafast H(+) Supercapacitor

From

State Key Laboratory of Electroanalytical Chemistry, CAS Center for Excellence in Nanoscience, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China.1

University of Chinese Academy of Sciences , Beijing 100049, China.2

We discovered an organic weak acid, 3,4,9,10-perylene tetracarboxylic acid (PTCA), confined on the electrode surface, revealing a reversible and ultrafast protonation/deprotonation non-Faradaic process but exhibiting analogous voltammetric peaks (capacitive peaks). A further synthesized PTCA-graphene supramolecular nanocomplex discloses a wide voltage window (1.2 V) and ultrahigh specific capacitance up to 143 F g(-1) at an ultrafast charge-discharge density of 1000 A g(-1) (at least 1 order of magnitude faster than present speeds).

The capacitance retention maintained at 73% after 5000 cycles. This unique capacitive voltammetric behavior suggests a new type of charge-storage modes, which may offer a way for overcoming the present difficulties of supercapacitors.

Language: English
Year: 2016
Pages: 1490-1493
ISSN: 15205126 and 00027863
Types: Journal article
DOI: 10.1021/jacs.5b12272

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis