About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: Comparison of radar altimetry, LIDAR and photogrammetry techniques

From

Department of Environmental Engineering, Technical University of Denmark1

Air, Land & Water Resources, Department of Environmental Engineering, Technical University of Denmark2

Technical University of Denmark3

National Space Institute, Technical University of Denmark4

Geodesy and Earth Observation, National Space Institute, Technical University of Denmark5

Orbicon6

DHI Water - Environment - Health7

Water Surface Elevation (WSE) is an important hydrometric observation, useful to calibrate hydrological models, predict floods, and assess climate change. However, the number of in-situ gauging stations is in decline worldwide. Satellite altimetry, including the recently launched satellite missions (e.g. the radar altimetry missions Cryosat 2, Jason 3, Sentinel 3A/B and the LIDAR mission ICESat-2), can determine WSE only in rivers which are more than ca. 100 m wide.

WSE measurements in small streams currently remain limited to the few existing in-situ stations or to time-consuming in-situ surveys. Unmanned Aerial Systems (UAS) can acquire real-time WSE observations during periods of hydrological interest (but with flight limitations in extreme weather conditions), within short survey times and with automatic or semi-automatic flight operations.

UAS-borne photogrammetry is a well-known technique that can estimate land elevation with an accuracy as high as a few cm, similarly UAS-borne LIDAR can estimate land elevation but without requiring Ground Control Points (GCPs). However, both techniques face limitations in estimating WSE: water transparency and lack of stable visual key points on the Water Surface (WS) complicate the UAS-borne photogrammetric estimates of WSE, while the LIDAR reflection from the water surface is generally not strong enough to be captured by most of the UAS-borne LIDAR systems currently available on the market.

Thus, LIDAR and photogrammetry generally require extraction of the elevation of the “water-edge” points, i.e. points at the interface between land and water, for identifying the WSE. We demonstrate highly accurate WSE observations with a new radar altimetry solution, which comprises a 77 GHz radar chip with full waveform analysis and an accurate dual frequency differential Global Navigation Satellite System (GNSS) system.

The radar altimetry solution shows the lowest standard deviation (σ) and RMSE on WSE estimates, ca. 1.5 cm and ca. 3 cm respectively, whilst photogrammetry and LIDAR show a σ and an RMSE at decimetre level. Radar altimetry also requires a significantly shorter survey and processing time compared to LIDAR and especially to photogrammetry.

Language: English
Year: 2020
Pages: 111487
ISSN: 18790704 and 00344257
Types: Journal article
DOI: 10.1016/j.rse.2019.111487
ORCIDs: Bandini, Filippo , Köppl, Christian Josef and Bauer-Gottwein, Peter

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis