About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine

From

Chalmers University of Technology1

National Food Institute, Technical University of Denmark2

Division of Food Chemistry, National Food Institute, Technical University of Denmark3

Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized yeasts.

A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a ∼24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition, we investigated the interplay between sulfur and selenium metabolism and the possibility that redox imbalance occurred along with intracellular accumulation of Se.

Collectively, our data show how the combination of metabolic and bioprocess engineering can be used for the production of selenized yeast enriched with beneficial Se-metabolites.

Language: English
Year: 2011
Pages: 282-293
ISSN: 10967184 and 10967176
Types: Journal article
DOI: 10.1016/j.ymben.2011.03.001

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis