About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

From

CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion problems in the boiler. subsequently leading to decreased overall efficiency and costly, unscheduled shut-downs.

The objective of this study was to obtain quantitative data on the release of inorganic elements from dedicated, well-characterized waste fractions; in order to understand the release pattern and the link to the formation of fly ash and aerosols in full-scale waste incinerators. The release of metals, S and Cl from four dedicated waste fractions was quantified as a function of temperature in a lab-scale fixed-bed reactor.

The waste fractions comprised chromated copper arsenate (CCA) impregnated wood, shoes, automotive shredder waste and PVC (poly-vinyl-chloride). The waste fractions were characterized by use of wet chemical analysis, and, based on the chemical composition of the initial fuel sample and the ash residue after the experiments; the release of inorganic elements was quantified.

The lab-scale release results were then compared with results from a related, full-scale partitioning study, in which test runs with the addition of similar, dedicated waste fractions to a base-load waste had been performed in a grate-fired WtE boiler. In general, the elements Al, Ca, Cr, Cu, Fe, Mg, Si and Ti were not released, in consistency with the non-volatile nature of these elements.

The elements Pb, Zn, Cl, S, Na, K and As, on the other hand, were released to a significant extent, and the release pattern was found to be both temperature dependent and fuel specific. Possible release mechanisms were discussed in relation to the chemical characteristics of each fuel, and some of the same release mechanisms as previously suggested for e.g. biomass-based fuels in the literature also seemed to apply for the present waste fractions.

Language: English
Year: 2010
Pages: 1062-1072
ISSN: 18737188 and 03783820
Types: Journal article
DOI: 10.1016/j.fuproc.2010.03.013
ORCIDs: Pedersen, Anne Juul , Frandsen, Flemming and Holgersen, Lilian Beenfeldt

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis