About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Adsorption, Chemical Enhancement, and Low-Lying Excited States of p-Methylbenzenethiol on Silver and Gold Nanoparticle Surfaces: A Surface Enhanced Raman Spectroscopy and Density Functional Theory Study

From

Xiamen University1

Department of Chemistry, Technical University of Denmark2

Adsorption and chemical enhancement of p-methylbenzenethiol (PMBT) on silver and gold nanoparticle surfaces have been studied using surface enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculations. In normal Raman spectra, the Raman intensity of the molecule is sensitive to methyl substitution at the para position.

DFT calculations for the Raman spectrum of PMBT reproduces well the Raman spectrum in nonpolar solution relative to PMBT in powder. This accords with the order of the PMBT molecules in the solid. The SERS results of PMBT adsorbed on Au and Ag nanoparticles indicate that the Raman intensity in the low-wavenumber region increases with increasing excitation wavelength.

The electronic structures of low-lying excited states have been explored for this increase in different PMBT-S-metal cluster complexes. DFT results indicate that low-energy excited states are in fact present and originate from two types of excitations, one localized at the sulfur–silver/gold bonding region and another one from a charge transfer state excited from PMBT to the silver and gold surfaces.

Both interfacial excited states contribute significantly to the chemical enhancement mechanism and change relative Raman intensities of adsorbed PMBT. The chemical bonding interaction and the interfacial energy level alignment are therefore important to understand SERS processes of PMBT adsorbed on noble metal surfaces of nanostructures.

Language: English
Publisher: American Chemical Society
Year: 2019
Pages: 23026-23036
ISSN: 19327455 and 19327447
Types: Journal article
DOI: 10.1021/acs.jpcc.9b06431
ORCIDs: 0000-0001-5246-389X , 0000-0001-5260-2861 , Zhang, Jingdong , 0000-0002-2601-7906 and 0000-0002-9775-8189

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis