About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Online forecast reconciliation in wind power prediction

From

Department of Electrical Engineering, Technical University of Denmark1

Center for Electric Power and Energy, Centers, Technical University of Denmark2

Energy Analytics and Markets, Center for Electric Power and Energy, Centers, Technical University of Denmark3

University of Mons4

Increasing digitization of the electric power sector allows to further rethink forecasting problems that are crucial input to decision-making. Among other modern challenges, ensuring coherency of forecasts among various agents and at various aggregation levels has recently attracted attention. A number of reconciliation approaches have been proposed, from both game-theoretical and statistical points of view.

However, most of these approaches make unrealistic unbiasedness assumptions and overlook the fact that the underlying stochastic processes may be nonstationary. We propose here an alternative approach to the forecast reconciliation problem in a constrained regression framework. This relies on a multivariate least squares estimator, with equality constraints on the coefficients (denoted MLSE).

A recursive and adaptive version of that estimator is derived (denoted MRLSE), hence allowing to track the optimal reconciliation in a fully data-driven manner. We also prove that our methods by design guarantee the coherency property for any out-of-sample forecasts (reconciliation by design). We show the effectiveness of our forecasting methods using a Danish wind energy dataset with 100 wind farms.

Language: English
Year: 2021
Pages: 106637
ISSN: 18732046 and 03787796
Types: Journal article
DOI: 10.1016/j.epsr.2020.106637
ORCIDs: Pinson, Pierre

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis