About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Definitive screening accelerates Taxol biosynthetic pathway optimization and scale up in Saccharomyces cerevisiae cell factories

From

Technical University of Denmark1

DTU Fermentation Platform, Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark2

Department of Biotechnology and Biomedicine, Technical University of Denmark3

Imperial College London4

University of Edinburgh5

Recent technological advancements in synthetic and systems biology have enabled the construction of microbial cell factories expressing diverse heterologous pathways in unprecedentedly short time scales. However, the translation of such laboratory scale breakthroughs to industrial bioprocesses remains a major bottleneck.

In this study, an accelerated bioprocess development approach was employed to optimize the biosynthetic pathway of the blockbuster chemotherapy drug, Taxol. Statistical design of experiments approaches were coupled with an industrially relevant high-throughput microbioreactor system to optimize production of key Taxol intermediates, Taxadien-5α-ol and Taxadien-5α-yl-acetate, in engineered yeast cell factories.

The optimal factor combination was determined via data driven statistical modelling and validated in 1L bioreactors leading to a 2.1-fold improvement in taxane production compared to a typical defined media. Elucidation and mitigation of nutrient limitation enhanced product titers a further two-fold and titers of the critical Taxol precursors, Taxadien-5α-ol and Taxadien-5α-yl-acetate were improved to 34 and 11 mg/L, representing a three-fold improvement compared to the highest literature titers in S. cerevisiae.

Comparable titers were obtained when the process was scaled up a further five-fold using 5L bioreactors. The results of this study highlight the benefits of a holistic design of experiments guided approach to expedite early stage bioprocess development. This article is protected by copyright. All rights reserved.

Language: English
Year: 2022
Pages: e2100414
ISSN: 18607314 and 18606768
Types: Journal article
DOI: 10.1002/biot.202100414
ORCIDs: 0000-0002-4387-984X and Martinez, José L.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis