About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Reduction of hypervalent iodine by coordination to iron(iii) and the crystal structures of PhIO and PhIO2

From

University of Southern Denmark1

Department of Chemistry, Technical University of Denmark2

Organic Chemistry, Department of Chemistry, Technical University of Denmark3

X-ray Crystallography, Department of Chemistry, Technical University of Denmark4

The iodine L3-edge X-ray Absorption Near Edge Structure (XANES) of organic and inorganic iodine compounds with formal iodine oxidation states ranging from -1 to +7 shows edge energies spanning from 4560.8 eV to 4572.5 eV. These were used to calibrate the oxidation state of iodine in a unique iron complex of iodosylbenzene (PhIO), [Fe(tpena)OIPh]2+ (tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate), which was found to be +1.6.

Thus the iodine oxidation state is reduced by 1.4 compared with that in precursor uncoordinated PhIO. On the basis of a combination of X-ray diffraction and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, we have determined the unknown crystal structure of PhIO, along with a new phase of iodylbenzene (β-PhIO2) using the Rietveld method.

Analogous 1-D chains of halogen bonded [O-IO-I] motifs are the dominant supramolecular interactions between PhIO and PhIO2 monomers in each structure respectively and the polymeric structures rationalise the general insolubility of these oxygen atom transfer reagents. A double stack of phenyl units in PhIO is found between the layers of the halogen bonded O/I chains.

In the case of PhIO, C-Hπ interactions between adjacent phenyl groups result in the alternate phenyl groups lying in parallel planes. Supplementing the strong polymerizing halogen bonds, this supramolecular interaction must exacerbate the insolubility of PhIO. The pillared structure of the new rhombohedral β-PhIO2 differs significantly from the known monoclinic lamellar phase, α-PhIO2, described 36 years ago in which the chains form lamellar stacks [N.

W. Alcock and J. F. Sawyer, J. Chem. Soc., Dalton Trans., 1980, 115-120].

Language: English
Publisher: The Royal Society of Chemistry
Year: 2016
Pages: 17714-17722
ISSN: 14779234 and 14779226
Types: Journal article
DOI: 10.1039/C6DT02937J

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis