About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Integrated Process Design–Computational Chemistry Framework for Process Intensification: H2S Recovery and Conversion

From

KT Consortium, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

PROSYS - Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Department of Chemical and Biochemical Engineering, Technical University of Denmark3

CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark4

Phase transfer catalysis (PTC) is a general methodology with importance in intensified extraction-reaction processes, and it is applicable to a large number of chemical reactions. This technique accommodates reactions that are generally not achievable through conventional synthesis methods due to the introduction of a homogeneous catalyst for biphasic systems that can transfer a reactant species between two immiscible phases.

This two-phase system offers several advantages, such as high conversion yields, high purity of products, operational simplicity, mild reacting conditions, suitability for scale-up of the process, and an environmentally benign reaction system. The economic viability and successful implementation of the large-scale process are heavily contingent on the design and modeling of these kinds of systems.

Although a number of attempts have been made to develop case-specific and generalized models for PTC, the proposed models and accurate thermodynamic parameters are not fully developed. The lack of published theoretical process modeling for scale-up hurts the commercialization potential of PTC. In this study, an integrated and multi-scale modeling framework is proposed for overcoming these limitations for liquid-liquid (LL)-PTC.

The framework needs little to no experimental data and combines different tools at different time and space scales to model virtually any LL-PTC system. The goal of this work is to utilize this framework for the recovery and conversion of H2S from an aqueous alkanolamine solution into value-added products as a way to improve economics and sustainability of the process, specifically at offshore oil and gas platforms.

Language: English
Year: 2020
Proceedings: The 11th International Chemical Engineering Congress & Exhibition (IChEC 2020)
Types: Conference paper
ORCIDs: Pudi, A. , Karcz, A. P. , Jones, M. N. , Andersson, M. P. and Mansouri, S. S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis