About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Conference paper

A CFD code comparison of wind turbine wakes

From

Department of Wind Energy, Technical University of Denmark1

Aeroelastic Design, Department of Wind Energy, Technical University of Denmark2

The University of Auckland3

A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for four test cases.

A grid resolution study, performed in EllipSys3D and SnS, shows that a minimal uniform cell spacing of 1/30 of the rotor diameter is necessary to resolve the wind turbine wake. In addition, the LES-predicted velocity deficits are also compared with Reynolds-Averaged Navier Stokes simulations using EllipSys3D for a test case that is based on field measurements.

In these simulations, two eddy viscosity turbulence models are employed: the k- (ε) model and the k- (ε)-fp model. Where the k- (ε) model fails to predict the velocity deficit, the results of the k- (ε)-fP model show good agreement with both LES models and measurements.

Language: English
Publisher: IOP Publishing
Year: 2014
Pages: 012140
Proceedings: 5th International Conference on The Science of Making Torque from Wind 2014European Academy of Wind Energy : The Science of Making Torque from Wind
ISSN: 17426596 and 17426588
Types: Journal article and Conference paper
DOI: 10.1088/1742-6596/524/1/012140
ORCIDs: Laan, van der, Paul Maarten and Sørensen, Niels N.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis