About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Accelerated synthesis of Sn-BEA in fluoride media: effect of H2O content in the gel

From

Lomonosov Moscow State University1

Department of Chemistry, Technical University of Denmark2

Organic Chemistry, Department of Chemistry, Technical University of Denmark3

Haldor Topsoe AS4

Tin-containing zeotypes, particularly Sn-BEA, are promising heterogeneous catalysts for a number of important industrially relevant reactions. However, the direct hydrothermal synthesis of these materials requires unfavourably long times, which is an obstacle for their industrial application. In the present study we show that up to 4-fold reduction of the crystallization time can be achieved by the decreasing of the H2O/SiO2 ratio in the synthesis gel from 7.5 to 5.6.

The crystallization kinetics has been studied for five series of gels containing 1.0 SiO2 : 0.27 TEA2O : x SnO2 : 0.54 HF : y H2O, for which y was fixed to 5.6, 6.8 and 7.7 at x = 0.005 and to 5.6 and 6.8 at x = 0.010. The crystallization time was varied within 0.5 – 60 days. The intermediate and final products obtained were investigated using XRD, FTIR, XRF, SEM, UV-Vis, MAS NMR spectroscopy and nitrogen adsorption-desorption techniques.

The products obtained with lower water content are shown to have the same structure, textural properties and morphology as materials synthesized with higher water content. Although the size of the crystals is found to decrease with water content in the gel, it does not affect the Sn coordination and environment as confirmed by 119Sn MAS NMR.

Language: English
Publisher: The Royal Society of Chemistry
Year: 2016
Pages: 4367-4374
ISSN: 13699261 and 11440546
Types: Journal article
DOI: 10.1039/C6NJ00394J
ORCIDs: Tolborg, Søren

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis