About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

(Liquid plus liquid) equilibria of binary polymer solutions using a free-volume UNIQUAC-NRF model

From

Center for Phase Equilibria and Separation Processes, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Center for Energy Resources Engineering, Centers, Technical University of Denmark3

In this work, a modified free-volume (FV) model based on the UNIQUAC-Nonrandom factor (UNIQUAC-NRF) model developed by Haghtalab and Asadollahi was proposed. While the combinatorial part of the proposed model for activity coefficient takes the same form as that of the entropic free-volume (entropic-FV) model, the residual part is similar to that of the UNIQUAC-NRF model.

The proposed model, i.e., the FV-UNIQUAC-NRF model overcomes the main shortcoming of the original UNIQUAC-NRF model in predicting the lower critical solution temperature (LCST) for polymer solutions. The appearance of the LCST is believed to be attributed to the existence of the free volume differences between polymer and solvent molecules.

Thus, the models without considering such differences fail to predict the LCST behavior of polymer solutions. The proposed model was applied to correlate the experimental data of (liquid + liquid) equilibria (LLE) for a number of binary polymer solutions at various temperatures. The values for the binary characteristic energy parameters for the proposed model and the FV-UNIQUAC model along with their average relative deviations from the experimental data were reported.

It should be stated that the binary polymer solutions studied in this work were considered as monodisperse. The results obtained from the FV-UNIQUAC-NRF model were compared with those obtained from the FV-UNIQUAC model. The results of the proposed model show that the FV-UNIQUAC-NRF model can accurately correlate the experimental data for LLE of polymer solutions studied in this work.

Also the error produced from the FV-UNIQUAC-NRF model show the slightly better accuracy in comparison with that from the FV-UNIQUAC model. The clear advantage of the proposed model, contrary to the original UNIQUAC-NRF model, is its capability in predicting the LCST for binary polymer solutions.

Language: English
Year: 2006
Pages: 923-928
ISSN: 10963626 and 00219614
Types: Journal article
DOI: 10.1016/j.jct.2005.10.005
ORCIDs: Kontogeorgis, Georgios

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis