About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Oxygen transport properties of dense and porous (La0.8Sr0.2)0.99Co0.8Ni0.2O3-δ

From

Electroceramics, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Electrochemistry, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

We have determined kex and Dchem for (La0.8Sr0.2)0.99Co0.8Ni0.2O3-δ by the use of electrical conductivity relaxation on a dense sample and by applying the ALS model to measured AC impedance spectrum on a porous electrode. Extracting kex and Dchem from the methods resulted in comparable values. kex and Dchem also agreed well with literature values on La0.8Sr0.2CoO3-δ, indicating that nickel substitution does not change the oxygen transport properties. kex of the porous sample was further found to decrease with a five times higher rate than Dchem when measured by using an Electrochemical Impedance Spectroscopy (EIS) over several days.

Language: English
Year: 2009
Pages: 1290-1297
ISSN: 18727689 and 01672738
Types: Journal article
DOI: 10.1016/j.ssi.2009.07.012
ORCIDs: Mogensen, Mogens Bjerg

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis