About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A practical approach to model checking Duration Calculus using Presburger Arithmetic

From

Department of Applied Mathematics and Computer Science, Technical University of Denmark1

Embedded Systems Engineering, Department of Applied Mathematics and Computer Science, Technical University of Denmark2

This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3(2–3):171–196, 2009) produces Presburger formulas whose sizes grow exponentially in the chop-depth of ϕ, where chop is an interval modality originating from Moszkowski (IEEE Comput 18(2):10–19, 1985), and (2) the decision problem for Presburger Arithmetic has a double exponential lower bound and a triple exponential upper bound.

The generated Presburger formulas have a rich Boolean structure, many quantifiers and quantifier alternations. Such formulas are simplified using so-called guarded formulas, where a guard provides a context used to simplify the rest of the formula. A normal form for guarded formulas supports global effects of local simplifications.

Combined with quantifier-elimination techniques, this normalization gives significant reductions in formula sizes and in the number of quantifiers. As an example, we solve a configuration problem using the SMT-solver Z3 as backend. Benefits and the current limits of the approach are illustrated by a family of examples.

Language: English
Publisher: Springer International Publishing
Year: 2014
Pages: 251-278
ISSN: 15737470 and 10122443
Types: Journal article
DOI: 10.1007/s10472-013-9373-7
ORCIDs: Hansen, Michael Reichhardt

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis