About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Measurement of membrane elasticity by micro-pipette aspiration

From

Colloids and Biological Interfaces Group, Self-organizing materials for nanotechnology Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

Self-organizing materials for nanotechnology Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

University of Southern Denmark4

The classical micro-pipette aspiration technique, applied for measuring the membrane bending elasticity, is in the present work reviewed and extended to span the range of pipette aspiration pressures going through the °accid (low pressures) to tense (high pressures) membrane regime. The quality of the conventional methods for analysing data is evaluated using numerically generated data and a new method for data analysis, based on thermodynamic analysis and detailed statistical mechanical modelling, is introduced.

The analysis of the classical method, where the membrane bending modulus is obtained from micro-pipette aspiration data acquired in the low-pressure regime, reveals a signi¯cant correction from membrane stretching elasticity. The new description, which includes the full vesicle geometry and both the membrane bending and stretching elasticity, is used for the interpretation of micro-pipette aspiration experiments conducted on SOPC (stearoyl-oleoyl-phosphatidyl-choline) lipid vesicles in the °uid phase.

The data analysis, which is extended by detailed image analysis and a ¯tting procedure based on Monte Carlo integration, gives an estimate of the bending modulus, that agrees with previously published results obtained by the use of shape °uctuation analysis of giant unilamellar vesicles. The obtained estimate of the area expansion modulus, is automatically corrected for contributions from residual thermal undulations and the equilibrium area of the vesicle is resolved.

Language: English
Publisher: Springer-Verlag
Year: 2004
Pages: 149-167
ISSN: 1292895x and 12928941
Types: Journal article
DOI: 10.1140/epje/i2003-10146-y
ORCIDs: Henriksen, Jonas Rosager

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis