About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Modelling the fate of organic micropollutants in stormwater ponds

From

Urban Water Engineering, Department of Environmental Engineering, Technical University of Denmark1

Department of Environmental Engineering, Technical University of Denmark2

Environmental Chemistry, Department of Environmental Engineering, Technical University of Denmark3

Residual Resource Engineering, Department of Environmental Engineering, Technical University of Denmark4

Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia models.

The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate.

This ensures that the results can be extended to other relevant stormwater pollutants. All three models use substance inherent properties to calculate MP fate but differ in their ability to represent the small physical scale and high temporal variability of stormwater treatment systems. Therefore the three models generate different results.

A Global Sensitivity Analysis (GSA) highlighted that settling/resuspension of particulate matter was themost sensitive process for the dynamic model. The uncertainty of the estimated MP fluxes can be reduced by calibrating the dynamic model against total suspended solids data. This reduction in uncertainty was more significant for the substances with strong tendency to sorb, i.e. glyphosate and pyrene and less significant for substances with a smaller tendency to sorb, i.e.

IPBC and benzene. The results provide support to the elaboration of MP pollution control strategies by limiting the need for extensive and complex monitoring campaigns targeting the wide range of specific organic MP found in stormwater runoff.

Language: English
Year: 2011
Pages: 2597-2606
ISSN: 18791026 and 00489697
Types: Journal article
DOI: 10.1016/j.scitotenv.2011.02.046
ORCIDs: Vezzaro, Luca , Eriksson, Eva and Mikkelsen, Peter Steen

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis