About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Individual variation in aerobic scope affects modeled vertical foraging migration in Atlantic cod Gadhus morhua, but only in moderate hypoxia

From

National Institute of Aquatic Resources, Technical University of Denmark1

Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark2

Technical University of Denmark3

Section for Ecosystem based Marine Management, National Institute of Aquatic Resources, Technical University of Denmark4

Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark5

Vertical migration is the most widespread migration in the aquatic world, yet the mechanisms limiting the extent of this behavior are largely unknown. In the Baltic Sea, some Atlantic cod Gadus morhua perform vertical foraging migrations into severely hypoxic demersal zones where aerobic metabolism is insufficient to cover energy requirements.

After foraging, the fish return to better oxygenated waters for physiological recovery and digestion. To test the influence of phenotypic variation in aerobic scope (AS; the difference between the maximum and the minimum metabolic rate) on the capacity to migrate into severely hypoxic zones, we incorporated AS into a state-dependent individual-based model simulating vertical foraging migrations of G. morhua.

We found little effect of individual variation in AS on the capacity for vertical migration when the zone used for physiological recovery was normoxic. In contrast, when there was moderate hypoxia (30% air saturation, O-2sat) in the zone used for physiological recovery, the high AS phenotype had a clear advantage because it could forage 3-4 times longer in the severely hypoxic (16% O-2sat, i.e. below the threshold for aerobic metabolism of the species) demersal zone compared to the low AS phenotype.

Thus, phenotypic variation in AS is only important when there is moderate hypoxia in the zone used for physiological recovery, suggesting that the influence of AS variation on the capacity for vertical migration is context dependent. We propose that elevated AS may be evolutionarily favorable when hypoxia prevails in the water column.

Language: English
Publisher: Inter-Research
Year: 2018
Pages: 201-208
ISSN: 16161599 and 01718630
Types: Journal article
DOI: 10.3354/meps12629
ORCIDs: Behrens, Jane W. , Svendsen, Jon Christian , Neuenfeldt, Stefan , Andersen, Niels Gerner and van Deurs, Mikael

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis