About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord

From

Department of Marine Ecology, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark1

Freshwater Biological Laboratory, University of Copenhagen, Helsingørsgade 51, DK-3400 Hillerød, Denmark2

This study presents the results of a year-long study investigating the characteristics of dissolved organic matter (DOM) in the Danish estuary, Horsens Fjord. The estuary is shallow with a mean depth of 2.9 m and receives high loadings of inorganic nutrients from its catchment. The behaviour of different DOM parameters i.e. dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP), light absorption and eight fluorescence components, were analysed relative to conservative mixing.

Many of the parameters did not behave conservatively. For DON, DOP and absorption, more than 65% of the freshwater concentration was removed initially at salinities below 12. At higher salinities two general patterns were identified. Concentrations of DON, DOP and four humic fluorescent fractions were not, or only weakly, related to salinity, showing that other processes than mixing were involved.

Other parameters such as DOC and two terrestrial humic components behaved conservatively. The same was true for DON during winter. These results are consistent with the finding that autochthonous DOM was the dominant source of DOM in this estuary. The molar C:N and C:P ratios for DOM (DOC:DON and DOC:DOP) in freshwater were 11 and 758, respectively.

The DOC:DON ratio increased in the estuary during the productive season to average values between 13 and 17, due to accumulation of DOC and removal of DON. The DOC:DOP ratio decreased within the estuary showing that in general DOM was enriched with phosphorous, however, during the spring, when phosphorous was limiting, the DOC:DOP ratio increased due to low DOP concentrations.

We hypothesise that in estuaries with high loadings of inorganic nutrients relative to DOM, production and degradation of DOM within the estuary will dominate over allochthonous inputs and control both concentration and characteristics of DOM. A conceptual model for this hypothesis is presented.

Language: English
Year: 2011
Pages: 376-388
ISSN: 10960015 and 02727714
Types: Journal article
DOI: 10.1016/j.ecss.2011.01.014
ORCIDs: Markager, Stiig

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis