About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase

From

University of Oslo1

Johannes Gutenberg University Mainz2

Aarhus University3

Department of Biotechnology and Biomedicine, Technical University of Denmark4

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark5

The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+ ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism.

Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+ dependent amidohydrolases that disfavour Zn2+ as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution.

The work illustrates a fundamental difference in the substrate-binding mode between Mn2+ dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+ dependent enzymes.

Language: English
Publisher: Nature Publishing Group UK
Year: 2018
Pages: 13104
ISSN: 20452322
Types: Journal article
DOI: 10.1038/s41598-018-31259-y
ORCIDs: 0000-0003-3609-3408 , 0000-0003-2266-5399 and Morth, J. Preben

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis