About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper · Book chapter

Geometry optimization of a fibrous scaffold based on mathematical modelling and CFD simulation of a dynamic cell culture

From

Sharif University of Technology1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

CAPEC-PROCESS, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

In tissue engineering, the development of a tissue essentially depends on supply of anadequate amount of nutrients and the design of a proper biophysical micro-environment for cells. The limitation of the available initial number of cells, expensive substances and time consuming experiments are the main bottlenecks in this type of processes.

In this regard, mathematical modelling and computational fluid dynamics simulation (CFD) are powerful tools to identify an efficient and optimized design by providing reliable insights of the process. This study presents a mathematical model and CFD simulation of cartilage cell culture under a perfusion flow, which allows not only to characterize the supply of nutrients and metabolic products inside a fibrous scaffold, but also to assess the overall culture condition and predict the cell growth rate.

Afterwards, the simulation results supported finding an optimized design of the scaffold within a new mathematical optimization algorithm that is proposed. The main concept of this optimization routine isto maintain a large effective surface while simultaneously keeping the shear stress levelin an operating range that is expected to be supporting growth.

Therewith, it should bepossible to gradually reach improved culture efficiency as defined in the objective function.

Language: English
Publisher: Elsevier
Year: 2016
Pages: 1413-1418
Proceedings: 26th European Symposium on Computer-Aided Process Engineering
Series: Computer Aided Chemical Engineering
ISBN: 0444634282 , 0444634444 , 9780444634283 and 9780444634443
ISSN: 15707946
Types: Conference paper and Book chapter
DOI: 10.1016/B978-0-444-63428-3.50240-X
ORCIDs: Gernaey, Krist and Krühne, Ulrich

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis