About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Ahead of Print article

In vivo demonstration of Pseudomonas aeruginosa biofilms as independent pharmacological microcompartments

From

Copenhagen University Hospital Herlev and Gentofte1

Technical University of Denmark2

University of Copenhagen3

Department of Health Technology, Technical University of Denmark4

Biomedical Engineering, Department of Health Technology, Technical University of Denmark5

Cellular Signalling & Biotransport, Biomedical Engineering, Department of Health Technology, Technical University of Denmark6

Background: Pseudomonas aeruginosa is difficult to eradicate from the lungs of cystic fibrosis (CF) patients due to biofilm formation. Organs and blood are independent pharmacokinetic (PK) compartments. Previously, we showed in vitro biofilms behave as independent compartments impacting the pharmacodynamics.

The present study investigated this phenomenon in vivo. Methods: Seaweed alginate beads with P. aeruginosa resembling biofilms, either freshly produced (D0) or incubated for 5 days (D5) were installed s.c in BALB/c mice. Mice (n = 64) received tobramycin 40 mg/kg s.c. and were sacrificed at 0.5, 3, 6, 8, 16 or 24 h after treatment.

Untreated controls (n = 14) were sacrificed, correspondingly. Tobramycin concentrations were determined in serum, muscle tissue, lung tissue and beads. Quantitative bacteriology was determined. Results: The tobramycin peak concentrations in serum was 58.3 (±9.2) mg/L, in lungs 7.1 mg/L (±2.3), muscle tissue 2.8 mg/L (±0.5) all after 0.5 h and in D0 beads 19.8 mg/L (±3.5) and in D5 beads 24.8 mg/L (±4.1) (both 3 h).

A 1-log killing of P. aeruginosa in beads was obtained at 8h, after which the bacterial level remained stable at 16 h and even increased in D0 beads at 24 h. Using the established diffusion retardation model the free tobramycin concentration inside the beads showed a delayed buildup of 3 h but remained lower than the MIC throughout the 24 h.

Conclusions: The present in vivo study based on tobramycin exposure supports that biofilms behave as independent pharmacological microcompartments. The study indicates, reducing the biofilm matrix would increase free tobramycin concentrations and improve therapeutic effects.

Language: English
Year: 2020
Pages: 996-1003
ISSN: 18735010 and 15691993
Types: Journal article and Ahead of Print article
DOI: 10.1016/j.jcf.2020.01.009
ORCIDs: Henneberg, Kaj-Åge , Sams, Thomas , 0000-0002-7662-9118 , 0000-0002-1347-725X and 0000-0002-7664-8570

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis