About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Analysis of the thermodynamic performance limits of the organic Rankine cycle in low and medium temperature heat source applications

From

Tsinghua University1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

KT Consortium, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

In this paper, an exploration of the practical thermodynamic performance limits of the organic Rankine cycle (ORC) under working fluid and cycle parameter restrictions is presented. These performance limits are more realistic benchmarks for the thermodynamic cycle than the efficiency of the Carnot cycle.

Subcritical ORC configuration with four typical case studies that are related to temperature ranging from 373.15 to 673.15 K is taken into account. The ORC is defined by its cycle parameters and working fluid characteristic properties. The cycle parameters involve evaporation temperature (Teva), condensation temperature (Tcon) and superheat degree (ΔTsup), while the working fluids are represented by the characteristic properties including critical temperature (Tc), critical pressure (pc), acentric factor (ω), and molar ideal gas isobaric heat capacity based on the principle of corresponding states.

Subsequently, Pareto optimum solutions for obtained hypothetical working fluids and cycle parameters are achieved using multi-objective optimization method with the consideration of both thermal efficiency (ηth) and volumetric power output (VPO). Finally, sensitivity analysis of the working fluid characteristic properties is conducted, and the second law of thermodynamics analysis, especially the applicability of entropy generation minimization, is performed.

The results show that the current commonly used working fluids are widely scattered below the Pareto front that represents the tradeoff between ηth and VPO for obtained hypothetical fluids. Teva and Tcon are the most dominant cycle parameters, while Tc and ω tend to be the most dominant characteristic property parameters.

The entropy generation minimization does not give the same optimal results.

Language: English
Publisher: Science China Press
Year: 2021
Pages: 1624-1640
ISSN: 18691900 and 16747321
Types: Journal article
DOI: 10.1007/s11431-020-1787-6
ORCIDs: Yang, Fu Fang

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis