About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Breatherlike excitations in discrete lattices with noise and nonlinear damping

From

Department of Informatics and Mathematical Modeling, Technical University of Denmark1

Technical University of Denmark2

We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects are included as multiplicative white noise and nonlinear damping.

Numerical analysis shows that the lifetime of the breather is always finite and, in a large parameter regime, inversely proportional to the noise variance for fixed damping and nonlinearity. We also find that the decay rate of the breather decreases with increasing nonlinearity and with increasing damping.

Using a collective-coordinate approximation, we show how the qualitative features of the numerical results can be analytically understood. Finally, in the dimer case we show that the multiplicative noise can be transformed into additive noise, and an exact stationary solution to the Fokker-Planck equation is obtained.

From this solution, the dimer system is found to exhibit a noise (temperature) induced phase transition.

Language: English
Year: 1997
Pages: 5759-5766
ISSN: 1550235x , 10980121 , 24699950 , 10953795 and 01631829
Types: Journal article
DOI: 10.1103/PhysRevB.55.5759
ORCIDs: Christiansen, Peter Leth

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis