About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The CORE Sequence: A Nanoscale Fluorocarbon-Free Silicon Plasma Etch Process Based on SF6/O2 Cycles with Excellent 3D Profile Control at Room Temperature

From

National Centre for Nano Fabrication and Characterization, Technical University of Denmark1

Nanofabrication, National Centre for Nano Fabrication and Characterization, Technical University of Denmark2

Advanced Nanomachining, Nanofabrication, National Centre for Nano Fabrication and Characterization, Technical University of Denmark3

Process engineering, National Centre for Nano Fabrication and Characterization, Technical University of Denmark4

MicroCreate B.V.5

University of Twente6

This study focuses on the development of a fluorocarbon-free directional silicon etching process, called CORE (Clear, Oxidize, Remove, and Etch) in which a switching sequence of SF6 and O2 is operated at room temperature. This distinguishes it from the old-fashioned room temperature and cryogenic mixed RIE processes as CORE enables a higher selectivity, creates pattern independency of etching profiles and works excellent at room temperature.

The CORE process resembles the well-known SF6-based Bosch process, but the usual C4F8 inhibitor is replaced by O2 oxidation with self-limiting characteristics. Therefore the CORE result is similar to Bosch, however has the advantage of preventing the pile-up of fluorocarbon deposits at the topside of deep-etched or nano-sized features.

At the same time, process drift is minimized as the reactor wall is staying perfectly clean. The CORE process has shown an excellent performance in high aspect ratio (3D) nanoscale structures with an accurate and controllable etch rate between 1 and 50 nm min−1 (and SiO2-selectivity of ca. 35) using the etch-tool in the RIE-mode.

By adding the ICP source (DRIE-mode), a directional etch rate up to 1 μm min−1 (at 50 sccm SF6 flow) and selectivity >200 for SiO2 is possible.

Language: English
Year: 2020
Pages: 024002
ISSN: 21628777 and 21628769
Types: Journal article
DOI: 10.1149/2162-8777/ab61ed
ORCIDs: Silvestre, Chantal , Shi, Peixiong , Cork, Roy , Jensen, Flemming , Hubner, Jorg and Jansen, Henri

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis