About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Advances in the long-pulse steady-state high beta H-mode scenario with active controls of divertor heat and particle fluxes in EAST

From

CAS - Institute of Plasma Physics1

Jülich Research Centre2

Princeton Plasma Physics Laboratory3

General Atomics4

Department of Physics, Technical University of Denmark5

Plasma Physics and Fusion Energy, Department of Physics, Technical University of Denmark6

EAST Team and Collaborators7

Since the last IAEA-Fusion Energy Conference, the Experimental Advanced Superconducting Tokamak (EAST) research program has been, in support of ITER and CFETR, focused on development in terms of the long-pulse steady-state (fully noninductive) high beta H-mode scenario with active controls of the stationary and transient divertor heat and particle fluxes.

The operational domain of the steady-state H-mode plasma scenario has been significantly extended with ITER-like tungsten mono-block divertor, plasma control and heating schemes. EAST has achieved several important milestones in the development of high β p H-mode scenario and its key physics and technologies.

A 60 s-scale long-pulse steady-state high β p H-mode discharge with the major normalized plasma parameters similar to the designed performance of the CFETR 1 GW fusion power operation scenario has been successfully established and sustained by pure RF heating and current drive. Several feedback control schemes have been developed for a sustained detachment with good core confinement.

This includes control of the total radiation power, target electron temperature, and particle flux measured using divertor Langmuir probes or a combination of the control of target electron temperature and AXUV radiation near the X point. The detachment feedback control schemes have been integrated with small-ELM regimes and high β p scenario via neon seeding, enabling a core and edge compatible integrated high-beta scenario applicable to long-pulse operations.

ELM suppression has been achieved using various methods, including resonant magnetic perturbations and impurity seeding. Full suppression of ELMs by using n = 4 RMPs has been demonstrated for ITER for the first time in low input torque plasmas in EAST. EAST has been operated with helium to support the ITER research requirements for the first time.

For a long-pulse, high bootstrap current fraction operation, a new lower tungsten divertor with active water-cooling has been installed, along with improvements in the heating and current drive capability.

Language: English
Publisher: IOP Publishing
Year: 2022
Pages: 042010
ISSN: 10185577 , 00295515 and 17414326
Types: Journal article
DOI: 10.1088/1741-4326/ac2993
ORCIDs: Xu, G. S. , Sun, Y. , Wang, L. , Liu, H. Q. , Zhang, B. , Ding, R. , Zhang, T. , Zeng, L. , Lyu, B. , Garofalo, A. M. , Li, K. D. and Yang, Q. Q.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis