About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Identifying the key system parameters of the organic Rankine cycle using the principal component analysis based on an experimental database

From

Tsinghua University1

KT Consortium, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

CERE – Center for Energy Ressources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark3

Department of Chemical and Biochemical Engineering, Technical University of Denmark4

The organic Rankine cycle (ORC) is a promising technology for medium-and-low temperature heat utilization. However, the mechanism of how system parameters affect output have been investigated very little in the experimental aspect. Experimental investigation on the impact of each system parameter on system performance requires decoupling these system parameters.

In this work, a series of experiments are conducted on a 10 kW scale ORC experiment setup. Statistical analysis is performed to identify a key parameter subset based on an experimental database. 6 system parameters, including temperature (Te) and pressure (pe) at the evaporator outlet, temperature (Tc) and pressure (pc) at the condenser inlet, expander shaft efficiency (ηSSE), and working fluid pump efficiency (ηP) are obtained.

Combined with the ORC net power output and thermal efficiency, an experimental database of system operation conditions is constructed. Subsequently, the principal component analysis (PCA) of ORC is conducted based on the experimental database. Prediction models are developed using multi-linear regression (MLR), back propagation artificial neural network (BP-ANN), and support vector regression (SVR).

Finally, accounting for the prediction performance of models and system parameter inter-correlation behavior, the key parameter subset is determined with the exhaustive feature selection method. The results imply that the key parameter subset is (Pe,ηP,Pc,ηSSE). Further removing or including more system parameters would reduce the accuracy of prediction models.

In addition, the MLR models are slightly less accurate than the more sophisticated BP-ANN and SVR models.

Language: English
Year: 2021
Pages: 114252
ISSN: 18792227 and 01968904
Types: Journal article
DOI: 10.1016/j.enconman.2021.114252
ORCIDs: Yang, Fufang

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis