About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust*

From

University of Copenhagen1

National Space Institute, Technical University of Denmark2

Astrophysics and Atmospheric Physics, National Space Institute, Technical University of Denmark3

Université Paris-Saclay4

Max Planck Institute for Extraterrestrial Physics5

University of La Laguna6

Institut de radioastronomie millimétrique7

National Institute for Astrophysics8

University of Sussex9

We analyze the far-infrared (FIR) properties of ∼5000 star-forming galaxies at z < 4.5, drawn from the deepest, super-deblended catalogs in the GOODS-N and COSMOS fields. We develop a novel panchromatic spectral energy distribution fitting algorithm, Stardust, that models the emission from stars, active galactic nuclei (AGNs), and infrared dust emission, without relying on energy balance assumptions.

Our code provides robust estimates of the UV−optical and FIR physical parameters, such as the stellar mass (M *), dust mass (M dust), infrared luminosities (L IR) arising from AGN and star formation activity, and the average intensity of the interstellar radiation field (〈U〉). Through a set of simulations we quantify the completeness of our data in terms of M dust, L IR, and 〈U〉 and subsequently characterize the distribution and evolution of these parameters with redshift.

We focus on the dust-to-stellar mass ratio (f dust), which we parameterize as a function of cosmic age, stellar mass, and specific star formation rate. The f dust is found to increase by a factor of 10 from z = 0 to z = 2 and appears to remain flat at higher z, mirroring the evolution of the gas fraction.

We also find a growing fraction of warm to cold dust with increasing distance from the main sequence, indicative of more intense interstellar radiation fields, higher star formation efficiencies, and more compact star-forming regions for starburst galaxies. Finally, we construct the dust mass functions (DMFs) of star-forming galaxies up to z = 1 by transforming the stellar mass function to DMF through the scaling relations derived here.

The evolution of f dust and the recovered DMFs are in good agreement with the theoretical predictions of the Horizon-AGN and IllustrisTNG simulations.

Language: English
Publisher: The American Astronomical Society
Year: 2021
Pages: 40
ISSN: 15384365 , 00670049 , 0004637x and 15384357
Types: Journal article and Preprint article
DOI: 10.3847/1538-4357/ac18ce
ORCIDs: Magdis, Georgios E. , 0000-0002-2951-7519 , 0000-0003-2680-005X , 0000-0001-6477-4011 , 0000-0003-3631-7176 , 0000-0003-1614-196X , 0000-0002-5588-9156 , 0000-0002-3331-9590 , 0000-0001-9773-7479 , 0000-0002-8412-7951 , 0000-0001-9197-7623 , 0000-0001-8706-2252 , 0000-0001-9419-9505 , 0000-0002-4085-9165 and 0000-0003-1033-9684

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis