About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

Analysis of turbulent wake behind a wind turbine

In Proceedings of the 2013 International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes (icowes2013) — 2013

Edited by Shen, WenZhong

From

Department of Mechanical Engineering, Technical University of Denmark1

Thermal Energy, Department of Mechanical Engineering, Technical University of Denmark2

Department of Wind Energy, Technical University of Denmark3

Fluid Mechanics, Department of Wind Energy, Technical University of Denmark4

The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and momentum conservations, the selfsimilarity of mean velocity profile and the eddy viscosity closure.

The theoretical approach is validated using the numerical results obtained from large eddy simulations with an actuator line technique at 0.1% and 3% ambient turbulence level and ambient wind velocity of 10 m/s, and 0.1% ambient turbulence level and ambient wind velocity of 7 m/s. The obtained results showed that neglecting the nonlinear term of velocity in the momentum equation in the far wake region cannot be a fair assumption, unlike what is generally assumed in most of text books of fluid mechanics.

Therefore the theoretical determination of the power law for the wake expansion and the decay of the wake velocity deficit may not be valid in the case of the wake generated behind a wind turbine with low ambient turbulence and high thrust coefficient. Although at higher ambient turbulence levels or lower ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained.

In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center line velocity deficit, could be correct in the far wake region of a wind turbine and low ambient turbulence levels.

Language: English
Publisher: Technical University of Denmark
Year: 2013
Proceedings: International Conference on aerodynamics of Offshore Wind Energy Systems and wakes (ICOWES 2013)
Types: Conference paper
ORCIDs: Kermani, Nasrin Arjomand , Andersen, Søren Juhl , Sørensen, Jens Nørkær and Shen, Wen Zhong

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis