About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Conference paper

A nuclear quantum memory enabled by strain

In 2019 Conference on Lasers and Electro-optics Europe and European Quantum Electronics Conference, Cleo/europe-eqec 2019 — 2019, pp. 1-1
From

Department of Photonics Engineering, Technical University of Denmark1

University of Cambridge2

Coherent excitation of an ensemble of quantum objects offers the opportunity to realise robust entanglement generation and information storage in a quantum memory [1]. Thus far, interfacing with such a collective excitation deterministically has remained elusive owing to the difficulty of controlling a probe spin in the midst of a complex many-body system.

In the strained atomic lattice of a semiconductor quantum dot, nuclear quadrupole effects generate an electron-nuclear interaction that can be engineered by driving the electron spin (Fig. 1a). By implementing an all-optical approach to access the individual quantised electronic-nuclear spin transitions, we have experimentally demonstrated coherent optical rotations of a single collective nuclear spin excitation corresponding to a spin wave called a nuclear magnon [2] (Fig. 1b).

Language: English
Publisher: IEEE
Year: 2019
Pages: 1-1
Proceedings: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference
ISBN: 1728104696 , 172810470X , 172810470x , 9781728104690 and 9781728104706
Types: Conference paper
DOI: 10.1109/CLEOE-EQEC.2019.8872964
ORCIDs: Mørk, J.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis