About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Filtration Rates and Scaling in Demosponges

From

University of Southern Denmark1

Fluid Mechanics, Coastal and Maritime Engineering, Department of Civil and Mechanical Engineering, Technical University of Denmark2

Department of Civil and Mechanical Engineering, Technical University of Denmark3

Demosponges are modular filter-feeding organisms that are made up of aquiferous units or modules with one osculum per module. Such modules may grow to reach a maximal size. Various demosponge species show a high degree of morphological complexity, which makes it difficult to classify and scale them regarding filtration rate versus sponge size.

In this regard, we distinguish between: (i) small single-osculum sponges consisting of one aquiferous module, which includes very small explants and larger explants; (ii) multi-oscula sponges consisting of many modules, each with a separate osculum leading to the ambient; and (iii) large single-osculum sponges composed of many aquiferous modules, each with an exhalant opening (true osculum) leading into a common large spongocoel (atrium), which opens to the ambient via a static pseudo-osculum.

We found the theoretical scaling relation between the filtration rate (F) versus volume (V) for (i) a single-osculum demosponge to be F = a3V2/3, and hence the volume-specific filtration rate to scale as F/V ≈ V−1/3 . This relation is partly supported by experimental data for explants of Halichondria panicea, showing F/V = 2.66V−0.41 .

However, for multi-oscula sponges, many of their modules may have reached their maximal size and hence their maximal filtration rate, which would imply the scaling F/V ≈ constant. A similar scaling would be expected for large pseudo-osculum sponges, provided their volume was taken to be the structural tissue volume that holds the pumping units, and not the total volume that includes the large atrium volume of water.

This may explain the hitherto confusing picture that has emerged from the power-law correlation (F/V = aVb) of many various types of demosponges that show a range of negative b-exponents. The observed sharp decline in the volume-specific filtration rate of demosponges from their very small to larger sizes is discussed.

Language: English
Publisher: MDPI AG
Year: 2022
Pages: 643
ISSN: 20771312
Types: Journal article
DOI: 10.3390/jmse10050643
ORCIDs: 0000-0002-8188-2951 and Larsen, Poul S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis