About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Selective production of aromatics from alkylfurans over solid acid catalysts

In Chemcatchem 2013, Volume 5, Issue 7, pp. 2044-2050
From

University of Wisconsin-Madison1

Department of Chemistry, Technical University of Denmark2

Department of Physics, Technical University of Denmark3

Haldor Topsoe AS4

Solid acid catalysts were studied at temperatures near 523K for the production of benzene, toluene, and p-xylene by the reaction of ethylene with furan, 2-methylfuran, and 2,5-dimethylfuran, respectively, through the combination of cycloaddition and dehydrative aromatization reactions. Catalysts containing Brønsted acid and Lewis acid sites (i.e., WOx-ZrO2, niobic acid, zeoliteY, silica-alumina) were more active than catalysts containing predominantly Lewis acid sites (γ-Al2O3, TiO2), which indicates the importance of Brønsted acidity in the production of aromatics.

Microporosity is not required for this reaction, because amorphous solid acids and homogeneous Brønsted acids demonstrate significant activity for p-xylene production. The production of p-xylene from 2,5-dimethylfuran proceeded at higher rates compared with the production of toluene and benzene from 2-methylfuran and furan, respectively.

Both WOx-ZrO2 and niobic acid demonstrate superior activity for aromatics production than does zeoliteY. WOx-ZrO2 demonstrates a turnover frequency for p-xylene production that is 35times higher than that demonstrated by zeoliteY. In addition, mesoporous materials such as WOx-ZrO2 offer higher resistance to deactivation by carbon deposition than do microporous materials.

Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests that the high reactivity of WOx-ZrO2 is mainly associated with the presence of subnanometer WOx clusters mixed with zirconium, which reach a maximum surface concentration at intermediate tungsten coverage.

Language: English
Year: 2013
Pages: 2044-2050
ISSN: 18673899 and 18673880
Types: Journal article
DOI: 10.1002/cctc.201200757

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis